

The College of Graduate Studies and the College of Medicine and Health Sciences Cordially Invite You to a

Master Thesis Defense

Entitled

INTRINSIC PROGRAMMED DEATH LIGAND 1 (PD-L1) ROLE IN PROMOTING TRIPLE NEGATIVE BREAST CANCER (TNBC) PROGRESSION

Βy

Duaa Salem Saleh Suliman Alkaabi

Faculty Advisor

Prof. Samir Attoub, Pharmacology and Therapeutics Department

College of Medicine and Health Sciences

Date & Venue

Monday, 20 March 2023

11:00 am

Yanah Theatre

Abstract

The Triple Negative Breast Cancer (TNBC) malignancy is characterized by lack of estrogen, progesterone, and HER2 receptors expression, making targeted drugs ineffective. TNBC has a high proliferative rate, which results in a poor prognosis. Chemotherapy, the primary treatment for metastatic breast cancer, is not an ideal choice due to its toxicity towards normal cells. Therefore, Cancer-targeted therapy has been developed to improve the specificity and strength of the immune system against cancer cells. PD-L1 is an immunosuppressive protein that inactivates T cells by binding to the inhibitory receptor PD-1. The clinical use of PD-L1 blockade agents has progressed beyond basic mechanistic studies. However, the lack of knowledge on how PD-L1 regulates cancer hallmarks can lead to missed therapeutic opportunities. The main objective of this research is to identify the phenotypic changes in TNBC cells after PD-L1 gene knockout and pinpoint the PD-L1 related intrinsic cellular signaling pathways responsible for promoting cancer growth and metastasis. The study investigates PD-L1 role in the progression of TNBC MDA-MB-231 cancer by using three designs of CRISPR-Cas9 lentiviral particles to knock out the PD-L1. Our results revealed that PD-L1 knockout significantly inhibited MDA-MB-231 cell proliferation and colony formation in vitro and tumor growth in the chick embryo chorioallantoic membrane (CAM) model in vivo. PD-L1 knockout also decreased the migration and invasion of MDA-MB-231 cells in vitro. We demonstrate a potential mechanism by which PD-L1 promotes MDA-MB-231 cells' malignancy through the regulation of PI3K/AKT and MAPK/ERK pathways. We have also reported that PD-L1 regulate the expression of p21, RhoA, c-Fos, c-Myc, Survivin, COX-2, in TNBC cells. Our findings provide insights into new potential cancer therapeutic strategies and suggest the development of anti-PD-L1 combination therapies for effective TNBC treatment.

Keywords: PD-L1; TNBC; proliferation; migration; invasion; CAM; Akt; ERK.