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Abstract 

Stochastic volatility modelling is of fundamental importance in financial risk management. 

Among the most popular existing models in the literature are the Heston and the CEV stochastic 

models. Each of these models has some advantages that the other one lacks. For example, the CEV 

model and the Heston model have different relative properties concerning the leverage as well as 

the smile effects. In this work we deal with the hybrid stochastic volatility model that is based on 

the CEV and the Heston models combined. This alternative model is expected to perform better 

than any of the two previously mentioned models in terms of dealing with both the leverage and 

the smile effects. We deal with the pricing and hedging problems for European options. We first 

find the set of equivalent martingale measures (E.M.M.). The market is found to be incomplete 

within this framework since there are infinitely many of E.M.M. We then find the targeted E.M.M. 

by minimizing the entropy. Using Ito calculus and risk-neutral method enable us to find the partial 

differential equation (P.D.E.) corresponding to the option price. Moreover, we use Clark-Ocone 

formula to obtain a hedging strategy that minimizes the distance between the payoff and the value 

of the hedged portfolio at the maturity. This hedging strategy is among the most efficient available 

strategies. 
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1. Introduction 

The classical Black and Scholes model (see [2]) is used regularly for the evaluation of 

options. However, this model suffers from several deficiencies among other the so called smile 

effect as well as the leverage effect. A well-known approach that for improving the Black Scholes 

model is to incorporate jumps in the stochastic process. The literature contains quite large number 

of research work on this issue, we can cite for instance [12], [8] and [6]. In [7] and [9] we can find 

new types of stochastic volatility models where the main objective is to try to capture the impact of 

the financial crises. In [1] the author suggests a model that combines stochastic volatility and 

jumps. In addition, the stochastic volatility models are considered useful tools for taking into 

account the smile phenomena and to some extent the leverage effect. One of the most popular 

stochastic volatility model is the Heston model ([5]). Another useful model within this context is 

the Constant Elasticity Variance (CEV) model developed by Cox ([3]), which is also widely used 

by practitioners to capture the leverage effect. This paper suggests a combined
1
 Heston-CEV 

model, which is expected to sustain the advantages of each model while reducing their 

weaknesses. 

 

The remaining part of the paper is organized as follows. Section 2 presents the model. 

Section 3 deals with the pricing of European options within this new context together with the 

underlying hedging strategy. The last section concludes the paper. 

 

 

2. The Model 

Assume that the probability space is ),,( PF . Assume also that ][0,)( TttW   and ][0,)( TttB   

are two Brownian motion processes such that dtBWd tt =,   and 1|<|  . We also consider the 

filtration ][0,)( TttF   to be the natural filtration generated by W  and B . The market is consisting 

of two assets: a risky asset ][0,)(= TttSS   to which is related an European call option and a riskless 

one given by  

 

 1,=],0,,= 0ATtdtArdA ttt   (1) 

                                                      
1
 The combined Heston-CEV model has independently been investigated by others see for example [10]. 



4 
 

  

where tr  is a deterministic measure of time varying interest rate. Assume that the data generating 

process for the stock price at time t , denoted by tS , is the following stochastic differential 

equation:  

 

 ,= tttttt dWYSdtSdS    (2) 

 tttt dBYbdtYdY  )(=   (3) 

 

where ][0,Tt  and 0>=0 xS . The parameters  ,  ,  ,   and b  are all constant numbers 

and t  is a deterministic function. Note that   is related to the volatility of the underlying asset, 

  is the elasticity of the underlying asset variance.  

 

2.1  Change of Probability and Equivalent Martingale Measures 

 In order to insure the no arbitrage condition and according to the first fundamental 

theorem of asset pricing we need to move to a new probabilistic environment where the probability 

is a P -Equivalent Martingale Measure ( P -EMM). It is well-known that if Q  is a P -equivalent 

probability then by the Radon-Nikodym theorem there exists a T -measurable random variable, 

T  such that ]1[=)( ATPEAQ  , )(A . Notice that T  is strictly positive P -a.s, since Q  

is equivalent to P  and 1=]1[=][ TPTP EE  . It is common to use the notation 
dP

dQ
T := . 

Consider now the P -martingale ][0,)(= Ttt   defined by  

 

 .|=]|[:= 







tPtTPt

dP

dQ
EE   

 

The next proposition gives the Radon-Nikodym density of an EMM with respect to P .   Let Q  

be a P -EMM. The Radon-Nikodym density of Q  with respect to P  is given by  
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 







  dtdBdW tttt

T

tttt

T

T )2(
2

1
)(exp= 22

00
  (4) 

  

where 
][0,)( Ttt   and 

][0,)( Ttt   are two predictable processes. Moreover t  and t  are related 

by 

  

 0.=)(1

tttttt YSr      (5) 

   

Proof. A complete proof is available on request.   

 The previous proposition leads to the following corollary.  The market of the model (1-3) 

is incomplete.   

 

Proof. A complete proof is available on request.   

  

We just saw from the previous proposition that there is an infinite number of P -EMM. 

We find the P -EMM that minimizes the relative entropy because this will minimize the 

Kullback–-Leibler distance within these settings (see for instance [11] and [14]). Our aim is to 

minimize  

 

  ,ln=ln=),( 


  TTPP E
dP

dQ

dP

dQ
EPQI 








 (6) 

 

over all the P -EMM. The following proposition gives the P -EMM that minimizes the relative 

entropy.   Let 0=̂  and 
tt

tt

YS

r
1

=ˆ






 . The P -EMM Q̂  defined by its Radon-Nikodym 

density  

 

 ,
2

1
exp=

2

1010 

























 



  dt

YS

r
dW

YS

r
e

tt

tt
T

t

tt

tt
T

T  






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minimizes the relative entropy.   

 

Proof. Since we deal with continuous stochastic processes we can apply theorem 1 of [13] 

which shows that the reverse relative entropy 











dQ

dP

dQ

dP
EQPI

Q
ln=),(  can be used instead 

of the relative entropy given by (6). We have  

 

 .=)(=2 2

2

1

222

t

tt

tt
ttttt

YS

r






















 



 

 

Thus,  

 

 .)(1
2

1
=),(

2

1

2

0 







































 


 dt
YS

r
EQPI

tt

tt
t

T

P 






  

 

Therefore, we need to minimize the following function:  

 

 .)(1
2

1
=)(

2

1

2



























 




tt

tt

YS

r
xxf




  

 

Note that since 1|<|  , )(xf  has an absolute minimum at 0=x . This ends the proof.   

 

 

3. Pricing and Hedging 

In this section we find the PDE of the option price as well as a hedging strategy that 

minimizes the variance. In a complete market, one is interested in finding a strategy that leads to a 

portfolio value that is equal to the payoff at maturity. In an incomplete model, this type of 

strategies are not available, thus the question is which one is the best. The answer will depend on in 

which sense the strategy is better. Here we define the best strategy to be the one that minimizes the 



7 
 

distance between the payoff and the value of underlying portfolio (for more details about this 

approach one can refer to [4]). From now on, we work with Q̂  i.e. the P -EMM that is 

minimizing the entropy given by ̂  from Proposition 2.1. In the previous section, we found the 

probability measures that insure the market is arbitrage free. Thus, we need to express our model 

under the new probability space. For this purpose, we define the following: 

  

 ].[0,,=ˆ=ˆ
100

Ttds
YS

r
WdsWW

ss

ss
t

ts

t

tt 



 


  

 

By using the Girsanov theorem Ŵ  is a Q̂ -Brownian motion. Moreover, under Q̂ , ][0,)( TttS   

satisfies  

 

 ],[0,,ˆ= TtWdYSdtSrdS tttttt    

 ].[0,,)(= TtdBYbdtYdY tttt   

  

Next we find the price of the option using the PDE approach.  

 

3.1  Option Price PDE 

 The following proposition gives the PDE of the option price for our model.  The price of 

an European call option with maturity T  on a stock with price ][0,)( TttS   defined by the model 

(1), (2) and (3) and with strike K  can be written at maturity as ][0,)),,(:=( Tttt YStCC   and it 

satisfies the following PDE: 

  

 0,=
2

1

2

1
)( 222 CryCxbyCbyCxCyxCrC txyyyxxyxtt     (7) 

  

with the terminal condition  )(:=)(=),,( KSShYSTC TTTT . 
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Proof. By Itô Lemma, we obtain ,ˆ= tyttxttt dBCYbWdCYSdtLdC    where  

 

 .
2

1
.

2

1
)(:= 222

xyttyytxxttytxtttt CYSbCYbCYSCYCSrCL     

 

Since, 

][0,

0

Tt

ds
s

r

t

Ce






















 is a Q̂ -martingale then CrL tt =  which gives (7). Complete proof is 

available on request.   

 

 In the next subsection we deal with the hedging problem.  

 

3.2  Hedging 

Let t  and t  denote the number of units invested at time t  in the risky and risk-less 

assets respectively. Thus the value tV  of the portfolio at time t  is given by  

 

 ].[0,,= TtSAV ttttt   

 

Assuming that the portfolio is self-financing, we can state the following.  The payoff 

 )(=)( KSSh TT  is not marketable (attainable). However if 
WD
ˆ

 and BD  are the Malliavin 

derivatives with respect to Ŵ  and B  respectively. Then, we have 

  

 ,])[(= 0
ˆ0

ds
s

r

T

TQ
eKSEC
  

 ,]|)([=
ˆ

ˆ
2

1

1
ds

s
r

T

t
tT

W

tQttx eFKSDEYSC



   (8) 

 .]|)([= ˆ
2

1

1
ds

s
r

T

t
tT

B

tQty eFKSDEYbC



   
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Proof. We use the expansion of )( 0 Ced
ds

s
r

t


 and the following equalities 

  

 ,ˆ=
0

0
0 tttt

ds
s

r

T

t
Tdt

t
r

T

T WdYSeeVV 





  (9) 

   .]|)([ˆ]|)([)(=)( ˆ

ˆ

ˆ
0

ˆ ttT

B

tQttT

W

tQ

T

TQT dBFShDEWdFShDEShESh    (10) 

  

A more detailed proof is available on request from the authors.   

 

The previous proposition is in alignment with the market incompleteness. Since the payoff 

is not attainable, we search in this case for a portfolio that leads to a value that is the closest to 

)( TSh . We need to determine in which sense the closeness should be defined. In this paper, we 

choose to find the hedging strategy that leads to a portfolio that minimizes the distance between the 

value of the portfolio at maturity TV  and the payoff )( TSh . The next proposition gives the 

strategy that minimizes the variance  2
ˆ ))(( TTQ

VShE  . The strategy minimizing 

 2
ˆ ))(( TTQ

VShE   is given by  

 

 .=]|)([=ˆ
ˆ

2

1

1

x

ds
s

r

T

t
tT

W

tttt CeFKSDEYS



   (11) 

 

Moreover, the distance between the payoff and value of the portfolio at maturity is in this case 

given by the following equation: 

 

   .])ˆ|)([(=)ˆ)(( 2
ˆ

0

2
ˆ dtShDEVShE tT

B

tQ

T

TTQ
  

  

 

 

 



10 
 

 

 

Proof. By comparing equations (9) and (10) we obtain the following expression:  

 

   












 

2

ˆ
0

ˆ

2

ˆ ]ˆ|)([=)ˆ)(( ttT

B

tQ

T

QTTQ
dBSfDEEVShE   

 






















































2

ˆ

0
ˆ

ˆˆ]ˆ|)([ tttt

ds
s

r

T

t
tT

W

t

T

Q
WdYSeSfDEE   

 ,)ˆ(=
0

ˆ 




 dtgE t

T

Q
  

 

where  

 

 .]ˆ|)([])ˆ|)([(=)(

2

ˆ

ˆ
2

ˆ




















tt

ds
s

r

T

t
tT

W

tQtT

B

tQ
YSxeSfDESfDExg   

 

The minimum is reached at 0.=)(' xg  Therefore, the strategy that minimizes the underlying 

variance is given by equation (11). The second part of the equality is obtained from equation (8). 

This ends the proof.   
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4. Conclusions 

It is widely agreed in the literature that stochastic volatility models are useful tools for risk 

management in financial markets. This topic is increasingly capturing the focus of researchers in 

mathematical finance. In this work, an alternative stochastic volatility model has been introduced. 

It combines the CEV and the Heston models. This combined model is more consistent with the 

reality than the CEV or the Heston model separately. The pricing and hedging problems for the 

considered model have been investigated. After providing the Radon-Nikodym density for an 

arbitrary equivalent martingale measure, we show that the market is incomplete in this scenario. 

Within this framework, the PDE of the option price for a European call option was derived under 

the minimal entropy martingale measure. Using the Malliaivn calculus and the Clarck-Ocone 

formula, the strategy that minimizes the variance was also obtained. A mathematical proof for 

each proposition is provided. The suggested model can be useful to investors in their continuous 

pursue for finding up to date strategies that can result in more efficient financial risk management 

compared to the existing approaches. 
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